Cellular prion protein is essential for oligomeric amyloid-β-induced neuronal cell death.

نویسندگان

  • Wataru Kudo
  • Hyun-Pil Lee
  • Wen-Quan Zou
  • Xinglong Wang
  • George Perry
  • Xiongwei Zhu
  • Mark A Smith
  • Robert B Petersen
  • Hyoung-gon Lee
چکیده

In Alzheimer disease (AD), amyloid-β (Aβ) oligomer is suggested to play a critical role in imitating neurodegeneration, although its pathogenic mechanism remains to be determined. Recently, the cellular prion protein (PrP(C)) has been reported to be an essential co-factor in mediating the neurotoxic effect of Aβ oligomer. However, these previous studies focused on the synaptic plasticity in either the presence or the absence of PrP(C) and no study to date has reported whether PrP(C) is required for the neuronal cell death, the most critical element of neurodegeneration in AD. Here, we show that Prnp(-/-) mice are resistant to the neurotoxic effect of Aβ oligomer in vivo and in vitro. Furthermore, application of an anti-PrP(C) antibody or PrP(C) peptide prevents Aβ oligomer-induced neurotoxicity. These findings are the first to demonstrate that PrP(C) is required for Aβ oligomer-induced neuronal cell death, the pathology essential to cognitive loss.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP) play crucial roles in the pathogenesis of Alzheimer's disease (AD). Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal memb...

متن کامل

Brain oligomeric β-amyloid but not total amyloid plaque burden correlates with neuronal loss and astrocyte inflammatory response in amyloid precursor protein/tau transgenic mice.

It has long been assumed that β-amyloid (Aβ) had to assemble into fibrillar amyloid plaques to exert its neurotoxic effects in Alzheimer disease. An alternative hypothesis is that soluble oligomers ofAβ play a much larger role in neuronal damage than the insoluble component. We have tested these competing hypotheses in vivo by studying the clinicopathologic correlates of oligomeric Aβ species a...

متن کامل

Prion-like seeding and nucleation of intracellular amyloid-β

Alzheimer's disease (AD) brain tissue can act as a seed to accelerate aggregation of amyloid-β (Aβ) into plaques in AD transgenic mice. Aβ seeds have been hypothesized to accelerate plaque formation in a prion-like manner of templated seeding and intercellular propagation. However, the structure(s) and location(s) of the Aβ seeds remain unknown. Moreover, in contrast to tau and α-synuclein, an ...

متن کامل

Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

Although it is well established that misfolding of the cellular prion protein (PrP(C)) into the β-sheet-rich, aggregated scrapie conformation (PrP(Sc)) causes a variety of transmissible spongiform encephalopathies (TSEs), the physiological roles of PrP(C) are still incompletely understood. There is accumulating evidence describing the roles of PrP(C) in neurodegeneration and neuroinflammation. ...

متن کامل

Interaction between misfolded PrP and the ubiquitin-proteasome system in prion-mediated neurodegeneration.

Prion diseases are associated with the conformational conversion of cellular prion protein (PrP(C)) to pathological β-sheet isoforms (PrP(Sc)), which is the infectious agent beyond comprehension. Increasing evidence indicated that an unknown toxic gain of function of PrP(sc) underlies neuronal death. Conversely, strong evidence indicated that cellular prion protein might be directly cytotoxic b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2012